

Делители мощности

Делители мощности предназначены для высокоточного разделения и суммирования сигнала в широком диапазоне частот. Компания «Микран» предлагает двух- и трёхрезисторные делители мощности серий ДМС и ДМ соответственно, выполненные в коаксиальных трактах 7/3,04 мм, 3,5/1,52 мм, 2,92/1,27 мм, 2,4/1,04 мм и, в зависимости от сечения канала соединителей, работающие в различных диапазонах частот вплоть до 50 ГГц. Устройства отличаются схемой, импедансом портов и областью применения. Трёхрезисторные делители (рис. 1, 2) применяются там, где требуется симметричное деление мощности, и качество измерения зависит от КСВН портов делителя. Трёхрезисторный делитель имеет коэффициенты передачи S21 = S31 = S32 = -6 дБ. Двухрезисторные делители (рис. 3) применяются там, где требуется развязка между разделёнными сигналами. При этом КСВН выходных портов не повлияет на устройства, подключённые к ним. У двухрезисторных делителей коэффициент передачи S21 = S31 = -6 дБ, а коэффициент передачи S32 = -12 дБ, что, по сравнению с трёхрезисторным делителем, обеспечивает большую развязку между выходными «плечами».

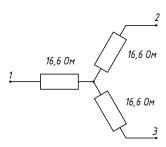
Делители предлагаются в двух конструктивных исполнениях: ДМ2А (ДМ-C2A) – устройства с углом между осями соединителей 120° (Y-компоновка) и ДМ2Б (ДМС2Б) – устройства, в которых ось входного соединителя расположена перпендикулярно оси выходных соединителей (Т-компоновка).

Применённые материалы и конструкция делителей мощности обеспечивает малые отражение и неравномерности ослабления, высокую стабильность параметров при минимум 5 000 циклов соединений в тракте 7/3,04 мм, 3 000 циклов в тракте 3,5/1,52 мм и 2 000 циклов в трактах 2,92/1,27 мм и 2,4/1,04 мм.

Делители мощности соответствуют требованиям ГОСТ 22261-94 (группа 3) по стойкости, прочности и устойчивости к внешним воздействующим факторам с уточнениями приведенными ниже.

Устойчивость к внешним воздействующим факторам

Механические воздействия


Синусоидальная вибрация							
Диапазон частот, Гц	102 000						
Амплитуда ускорения, м/c² (g)	200 (20)						
Одиночные удары							
Пиковое ударное ускорение, м/c² (g)	1 000 (100)						
Длительность действия, мс	0,215						
Многократные удары							
Пиковое ударное ускорение, м/c² (g)	150 (15)						
Длительность действия, мс	15						

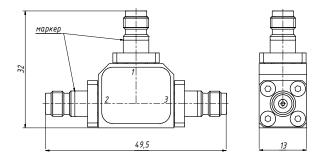
Климатические воздействия

Повышенная температура среды					
Максимальное значение при эксплуатации, °С	+85				
Максимальное значение при транспортировании и хранении, °C	+40				
Пониженная температура среды					
Минимальное значение при эксплуатации, °С	-60				
Изменение температуры среды *					
Диапазон температур, °С	-60+85				
Повышенная влажность воздуха *					
Рабочая (t = 35 °C), %, не более	93 ± 3				
Пониженное атмосферное давление					
Значение при эксплуатации, Па (мм рт. ст.)	6 × 10 ⁴ (450)				
Предельное значение при транспортировании, Па (мм рт. ст.)	1,2 × 10 ⁴ (90)				

^{*} Изделия прочны к воздействию фактора.

Принципиальные схемы

ДМ2А-32-03Р; ДМ2А-32-13Р; ДМ2Б-32-03Р; ДМ2Б-32-13Р; ДМ2А-40-14Р; ДМ2Б-40-14Р; ДМ2А-50-05Р; **ДМ2Б-50-05Р**


Технические параметры

Делители мощности серии ДМ2Б

Модель	Соединитель	Диапазон рабочих частот, ГГц	КСВН входа, не более	КСВН выходов, не более	КП вход-выход, дБ, не менее	Разность амплитуд между КП вход-выход, дБ, не более	КП выход-выход, дБ, не более	Разность фаз КП вход-выход, °, не более	Р _{в.} *, Вт, не более	Рисунок
ДМ2Б-50-05Р	тип 2,4 мм	050	1,3 (020 ГГц)	1,3 (020 ГГц)	−6,8 (020 ГГц) −8,2	0,3 (020 ГГц)	−6,8 (020 ГГц) −8,2	10	1 **	11
	(розетка)		1,4 (2050 ГГц)	1,4 (2050 ГГц)	-8,2 (2050 ГГц)	і (2050 ГГц)	-8,2 (2050 ГГц)			

 $^{^{*}}$ Максимальная долговременная рассеиваемая мощность по постоянному току.

Габаритные размеры

ДМ2Б-50-05Р

Пример заказа

— ДM2A-03P Делитель мощности, соединители тип IX, вар. 3 (розетка).

^{**} Значение дано для нормальных климатических условий. При увеличении температуры окружающей среды рекомендуется уменьшить величину входной мощности.